Solving Generalized Small Inverse Problems
نویسنده
چکیده
We introduce a “generalized small inverse problem (GSIP)” and present an algorithm for solving this problem. GSIP is formulated as finding small solutions of f(x0, x1, . . . , xn) = x0h(x1, . . . , xn) + C = 0(mod M) for an n-variate polynomial h, non-zero integers C and M . Our algorithm is based on lattice-based Coppersmith technique. We provide a strategy for construction of a lattice basis for solving f = 0, which are systematically transformed from a lattice basis for solving h = 0. Then, we derive an upper bound such that the target problem can be solved in polynomial time in logM in an explicit form. Since GSIPs include some RSA-related problems, our algorithm is applicable to them. For example, the small key attacks by Boneh and Durfee are re-found automatically. This is a full version of [13].
منابع مشابه
A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملSolving a generalized aggregate production planning problem by genetic algorithms
This paper presents a genetic algorithm (GA) for solving a generalized model of single-item resource-constrained aggregate production planning (APP) with linear cost functions. APP belongs to a class of pro-duction planning problems in which there is a single production variable representing the total production of all products. We linearize a linear mixed-integer model of APP subject to hiring...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملSolving Inverse Sturm-Liouville Problems with Transmission Conditions on Two Disjoint Intervals
In the present paper, some spectral properties of boundary value problems of Sturm-Liouville type on two disjoint bounded intervals with transmission boundary conditions are investigated. Uniqueness theorems for the solution of the inverse problem are proved, then we study the reconstructing of the coefficients of the Sturm-Liouville problem by the spectrtal mappings method.
متن کاملA structured approach to design-for-frequency problems using the Cayley-Hamilton theorem
An inverse eigenvalue problem approach to system design is considered. The Cayley-Hamilton theorem is developed for the general case involving the generalized eigenvalue vibration problem. Since many solutions exist for a desired frequency spectrum, a discussion of the required design information and suggestions for including structural constraints are given. An algorithm for solving the invers...
متن کامل